Допустимая нагрузка на почву от фундамента в местах основания столбов

Фундамент. Расчет нагрузки на грунт.

Многие пытаются рассчитывать конструкцию фундамента, взяв за основу характеристики грунтов. Я также пытался это сделать, да только тема эта по грунтам для меня оказалась чересчур обширная. Скальные, крупнообломочные, глинистые да песчаные. вобщем, достаточно только взглянуть на ГОСТ 25100-95 (Грунты. Классификация.), как осознаешь, что львиная доля всех этих знаний мне и не нужна вовсе. А где же из этого нагромождения информации то, что мне нужно?

И я опять пошел по пути упрощения. Не надо мне изучать грунты. Давай-ка я сначала определю, сколько будет весить моя конструкция, мой дом, который я намерен построить. А потом уже буду посмотреть, выдержит ли земля участка это строение, или он провалится в нее по крышу.

Вобщем, поехали. Сначала считаю вес фундамента. Беру за основу сплошной монолит, железобетон. Поскольку мне нужен цокольный этаж, то и фундамент у меня будет ленточный и никакой другой. Ведь лента фундамента — это часть стены цокольного этажа.

Короче, Высота фундамента пусть будет 1,5 метра. Ширина ленты — 0,3 м. Габариты дома — 9 х 9 метров. Башенок всяких, верандочек и фигурных крылечек не предусматриваю, я вообще противник всего этого, поскольку живу не в Африке. Потому и дом строго квадратный, чтобы уменьшить теплопотери. И что же получается? 9 * 4 * 0,3 * 1,5 = 16,2 кубометра.

К этому добавлю еще подошву шириной 0,5 м и высотой 0,1 м. 9 * 4 * 0,5 * 0,1 = 1,8 кубометра. И вот, в итоге 16,2 + 1,8 = 18 кубометров бетона. Беру удельный вес 2500 кг/м 3 и множу на объем 18 м 3 . Получается 45000 кг. Внушительно, ничего не скажу.

А еще стены. Это примерно 20 рядов по 60 газобетонных блоков, каждый из которых весит 16 кг. 20 * 60 * 16 = 19200 кг. Нормально. Вес раствора для кладки и прочей аммуниции типа арматуры не считаю, ведь есть еще оконные проемы да дверные, которых не учитывал. Да и не диссертацию пишу, право.

Что дальше? Перекрытия, конечно. У меня они деревянные, а удельный вес сосны — 500 кг/м 3 . Не буду вдаваться в подробности, просто скажу, что каждое из двух перекрытий у меня весом около 3000 кг. Но есть одно НО: нижнее перекрытие опирается не только на стены, оно опирается и на пол цокольного этажа через перегородки в нем. А верхнее перекрытие опирается также на перегородки, стоящие на нижнем перекрытии. Так что я, пожалуй, возьму в расчет только половину веса перекрытий. Только 3000 кг.

А мебель и всю утварь, включая жильцов, вообще не буду учитывать. Веса немного, да и опора для всего — перекрытия. Гораздо больше будут значить крыша и снеговая нагрузка. По моим расчетам, опять же без подробностей здесь, стропильная система вкупе с обрешеткой, фронтонами и профнастилом весит до 3500 кг.

А вот снеговая нагрузка. При той крутизне скатов, что я запланировал, ее вообще-то и не должно быть, да и крышу ориентирую так, чтобы ветрами не наметало, а сдувало. Для того, чтобы выбрать нужную ориентацию, не одну крышу в округе проанализировал. Но все же, чем черт не шутит! Положу-ка я для расчетов еще и полуметровый слой снега на крышу.

Крыша приличная, площадь у нее около 150 квадратных метров, а полуметровый слой снега на ней будет весить. ух ты! 30 тонн! Ладно, принято. Считаем все вместе:

Фундамент: 45000 кг.
Стены: 19200 кг.
Перекрытия: 3000 кг.
Крыша: 3500 кг.
Снег: 30000 кг.

Итого? Итого получается 100700 кг. Это все увеличиваю еще в полтора раза для надежности и в качестве результата принимаю общий вес в 150 тонн.

Вот. Теперь самое интересное. Какая там у меня площадь подошвы фундамента? 9 * 4 * 0,5 = 18 м 2 , или 180000 см 2 . Теперь прикинем, какой вес давит на каждый квадратный сантиметр подошвы: 150000 / 180000 = 0,83 кг/см 2 .

А теперь еще интереснее. Посмотрим на таблицы, в которых указана допустимая нагрузка на разные грунты.

Расчетные сопротивления R крупнообломочных грунтов

Источник:
http://sebestroj.ru/raschety/raschet-nagruzki-na-grunt.html

Расчет фундамента. Оценка сжимаемости грунта. Доступно о сложном

Автор: Дмитрий Белкин

Сегодня я хотел бы показать пример простых математических расчетов, которые очень могли бы пригодиться вам не только для расчета фундамента своего дома или сарая, но, также и для занимательного и веселого времяпровождения, особенно, если вы любите занимать свой пытливый и беспокойный ум расчетами в уме или на калькуляторе. Метод расчета фундамента, который приведен в этой статье, доступен абсолютно каждому.

Как и всегда, голые расчеты ничего не стоят без кропотливой и аккуратной проработки предметной области. Поэтому и в этой статье я не хотел бы эту предметную область обойти стороной. Кроме того, именно для анализа предметной области я и пишу эту статью. Собственно расчет фундаментов идет в качестве довеска к предметной области, как первый поцелуй двух школьников к двухчасовой прогулке на морозе.

Предварительные соображения (проработка предметной области)

Первое, что хотелось бы заметить, так это то, что я, на собственном дворе хожу по земле, и эта земля у меня под ногами не проваливается. Надеюсь, что и у вас такая же ситуация. Причем, если ситуация другая, что вполне может быть, то ничего страшного! Нужно просто будет приводимые расчеты скорректировать. Дальше, я думаю, будет понятно, как именно. Но я лично не проваливаюсь. От этого и будем отталкиваться.

Поскольку я на собственной земле стою и даже следов не оставляю, то из этого факта сразу следует вывод, что нагрузка, которую я оказываю на почву не достаточно велика для того, чтобы та деформировалась. Похоже, этот факт говорит о том, что почва у меня под ногами достаточно трудносжимаема для той нагрузки, которую я на нее оказываю.

А какую я оказываю нагрузку на почву? Сейчас посчитаем

Нагрузка на почву, оказываемая обычным человеком.

Для подсчета нагрузки нам надо посчитать площадь наших стоп. Причем не по ноге, а по обуви. Площадь прямоугольника считается умножением его длины на ширину. Но ноги у нас, как правило, не имеют форму прямоугольника. Нам придется это учитывать, особенно потому, что мы поставили себе цель не загружаться теорией, а провести расчет просто, весело и занимательно.

Так вот я беру свой ботинок и линейкой очень приблизительно (округляю в меньшую сторону) меряю длину и ширину, как если бы это был прямоугольник. У меня получилось длина 28 см , ширина 10 см . Это по минимуму. Площадь прямоугольника получилась 28*10 = 280 см 2 или 0,028 м 2 . При переводе мы помним, что в одном метре 100 сантиметров, а в одном квадратном метре — 10 000 (Десять тысяч) квадратных сантиметров. На сколько реальная площадь стопы меньше площади этого прямоугольника? На глаз не очень на много. Ну, скажем, на 20% . Ноги у нас две, и того получается общая площадь моей опоры на землю равна 280*2/20% = 448 см 2 или 0,045 м 2 . Мой вес составляет 75 кг (и мне было не просто его достичь). Таким образом, нагрузка, которую я оказываю на почву, равна 75/448 = 0,167 кг на см 2 .

А какую нагрузку на почву оказывают другие знакомые нам предметы?

Со мной все понятно. Я давлю на каждый см 2 почвы весом в 167 грамм , и это совсем не много. Это позволяет мне не оставлять на почве глубоких следов. А вот мой автомобиль тоже не проваливается и тоже стоит во дворе и не оставляет на земле следов. Какую же он оказывает нагрузку на грунт? У автомобиля 4 точки опоры, площадь которых подсчитать очень сложно. Как вы понимаете, опорой для автомобиля выступают так называемые «пятна контакта» резиновых колес с почвой. Как подсчитать площадь этих пятен — я даже не представляю. Но приблизительно можно попробовать. Ширина колеса 205 мм . Я вот сейчас перекрещусь и буду считать, что пятно каждого колеса составляет прямоугольник 210 на 100 мм . Интересно, на сколько я ошибся? К тому же пятна передних колес, наверное, больше по площади пятен задних колес. Вес автомобиля 1200 кг . Считаем.

  • Площадь одного пятна (в см): 21*10 = 210 см 2
  • Площадь четырех пятен: 210*4 = 840 см 2
  • Нагрузка автомобиля на почву: 1200/840 = 1.42 кг/см 2

Переходим к расчету фундамента

Напомню, что все предыдущие и весьма занимательные вещи мы считали для одной только цели — рассчитать фундамент здания по той нагрузке, которую он будет оказывать на почву. Вопрос об определении степени трудносжимаемости грунта мы пока оставим в покое. Надо же понять сначала, с какой нагрузкой мы дело имеем.

Считать площадь опоры фундамента — одно удовольствие. Там все прямо и перпендикулярно. Считать вес дома — тоже особого труда не представляет. В любом случае можно прикинуть вес, а потом пару тонн добавить. На погрешности, на мебель и на себя любимых.

Для простоты расчетов возьмем простой прямоугольный дом 10Х10 метров. Причем домик наш будет стоять на фундаменте из бетонных блоков. Толщина фундамента 30 см . Высота фундамента вместе с цоколем составляет 1,5 метра . Стены нашего дома выложены из пенобетона плотностью 600 килограмм в кубе . Толщина стен 20 см Коробка высотой 6 метров . Не забудем про фасады из тех же блоков — два треугольника высотой 4 метра . Стропилы и крыша из ондулина. На всякую сопутку типа балок для пола, половых досок и всего такого добавим полторы тонны . Это 2 куба дерева . Ну и как обещал, еще пару тонн на все про все. Кстати, домик не маленький получается.

Вес будущего дома

Собственно фундамент

  • Площадь основания (см 2 ): (1000*4)*30 = 120 000 см 2 (Сто двадцать тысяч)
  • Площадь основания (м 2 ): (10*4)*0,3 = 12 м 2
  • Объем (м 3 ): 12*1,5 = 18 м 3
  • Плотность бетонных фундаментных блоков: 2200 кг/м 3 (это тяжелые блоки)
  • Вес фундамента: 18*2200 = 39 600 кг

Стены (коробка)

  • Площадь основания (см 2 ): (1000*4)*20 = 80 000 см 2 (Восемьдесят тысяч)
  • Площадь основания (м 2 ): (10*4)*0,2 = 8 м 2
  • Объем (м 3 ): 8*6 = 48 м 3
  • Плотность наших пенобетонных блоков: 600 кг/м 3
  • Вес коробки: 48*600 = 28 800 кг

Треугольники фасадов (2 штуки)

Нас интересует только их вес. Треугольники у нас равнобедренные сложим их так, чтобы получился параллелограмм с основанием 10 метров и высотой 4 метра

  • Площадь основания (см 2 ): 1000*20 = 20 000 см 2 (Двадцать тысяч)
  • Площадь основания (м 2 ): 10*0,2 = 2 м 2
  • Объем (м 3 ): 2*4 = 8 м 3
  • Плотность наших пенобетонных блоков: 600 кг/м 3
  • Вес обоих фасадов: 8*600 = 4 800 кг
Читайте также  Купить бетон с доставкой от производителя, Бетононасосы - услуги аренды в Ростове-на-Дону, Насос для подачи бетона: аренда, цена

Площадь нашей кровли составляет примерно 130 м 2 . Я, когда считал, имел ввиду, что квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора)
Вес ондулина по моим источникам всего 3,3 кг на квадратный метр. Итого вес кровли составит 130*3,3 = 429 кг .

Итого вес дома составит: 39600 + 28800 + 4800+ 429 + 3500 = 77 129 кг (Семдесят семь тысяч сто двадцать девять) или 77 тонн .

Нагрузка дома на почву

А вот теперь самое интересное. Будем рассматривать различные варианты фундаментов

Дом на ленточном фундаменте

Наш дом на простейшем ленточном фундаменте: 77129/120000 = 0,64 кг/см . Всего в 4 раза больше, чем человек на почву. И значительно меньше, чем автомобиль.

Дом на фундаменте с подушкой

Наш дом на фундаменте с подушкой (ширина фундамента увеличивается с 30 до 40 см ) Будем считать, что вес дома не меняется. Тогда новая площадь основания составит: (1000*4)*40 = 160 000 см 2 и нагрузка уменьшится до 77129/160000 = 0,48 кг/см . Всего в 2,8 раза больше, чем человек на почву.

А какая ширина должна быть у нашего фундамента, чтобы наш дом оказывал давление на почву не больше, чем человек среднего веса? Надо составить уравнение. 77129/4000*X = 0,167 .
Отсюда Х = 77129/0,167/4000 = 115 см . Напомню. Именно такова должна быть толщина основания фундамента нашего дома, чтобы он оказывал давление на почву не большее, чем человек. Другими словами, если мы при этих условиях поставим наш дом на газоне, то дом даже не продавит дерн! Мы же не продавливаем, когда на газоне стоим?

Дом на фундаменте типа «плита»

А теперь давайте представим себе, что мы сделали не крутой, а очень крутой фундамент. Мы выкопали котлован, налили на его дне сплошную бетонную плиту, а на ней выстроили дом. Плита не толстая. Всего 10 см толщиной.

Пллощадь плиты: 1000*1000 = миллион квадратных сантиметров или 100 м 2
Объем: 100*0,1 = 10 м 3 и вес (бетон на щебне): 10*2200 = 22 000 кг . Это добавка к весу дома с фундамеитом
Нагрузка: 77129+22000/миллион = 0,1 кг/см 2 (Нагрузка на землю человека 0,167 кг/см 2 )

Дом на столбчатом фундаменте

И напоследок давайте посчитаем нагрузку того же дома на фундаменте столбчатом. Здесь нам надо пересчитать все, что касается фундамента. Будем считать, что от нашего полутораметрового фундамента остался только ростверк и цоколь. Итого 0,75 метра . Столбы будем использовать диаметром 30 см и длиной 2 м . Столбы будут заполнены бетоном и расположены на расстоянии метра друг от друга. Таким образом, у нас будет (чтобы не заморачиваться) 40 (+-1) столбов

Вес цоколя и ростверка: 19 800 кг
Объем одного столба 0,14 м 3 . Вес 310 кг (округленно). Общий вес столбов 12 400 кг .
Вес фундамента 32 200 кг , а был 39 600 кг .
Вес дома стал 69 729 кг , а был 77 129 кг

Площадь одного столба 3,14*15*15 = 706,5 см 2
Площадь опоры: 706,5 * 40 = 28 260 см 2 , а было 120 000 см 2 (. )

Нагрузка на сантиметр: 69 729/28 260 = 2,46 кг/см 2 (. ), а было 0,64 кг/см 2 , то есть, почти в 4 раза больше.

Вот во столько же раз увеличится и риск трещин и просадок.

Выкинем ростверк с цоколем. Будем жить на столбах, как куры на насесте. тогда дом станет весить на 20 тонн меньше и общий вес дома получится 49 929 кг и нагрузка станет всего-то 1,76 кг/см 2 , что, положа руку на сердце, тоже довольно много.

Существеннейшие выводы по расчетам фундамента

А выводы просто возбуждающе ошеломляющие.

  • Если отвлечься от сезонного пучения грунта, например, построить дом из дерева, то, сделав не слишком уж широкий фундамент, можно действительно обойтись вообще без фундамента, ибо нагрузка дома на грунт вполне сравнима с нагрузкой, которую на грунт оказывает вполне стройный мужчина.
  • У нас все-таки и дом великоват (три этажа) и фундамент тяжеловат (мы могли бы с таким же успехом использовать и пустотные бетонные блоки). И все равно даже такой дом можно строить на мелкозаглубленном ленточном фундаменте. К слову, вес фундамента можно легко уменьшить в 2 раза . Я там все по максимуму считал.
  • Нет абсолютно никакого смысла в строительстве фундаментой плиты, ибо цена строительства не сравнима с полученным эффектом. Вполне можно обойтись тем, чтобы поставить первый слой бетонных блоков поперек и устроить тем самым фундаментную подушку. А в большинстве случаев можно и без этого вполне обойтись.
  • Столбчатые фундаменты надо использовать с большой, просто огромной осторожностью, что я и писал в статье про этот тип фундаментов. Теперь, по крайней мере, понятно, что имелось ввиду.

Как измерить, или хотя бы оценить степень сжимаемости грунта

Полагаю, надо сделать некий щуп с площадью основания сантиметров 10 на 20 ( 200 см 2 ) и нагрузить его хорошим весом. Скажем 200 кг . Тогда нагрузка на один сантиметр будет ровно 1 килограмм. После этого линеечкой, а лучше штангеном, конечно, померить, на сколько основание ушло в грунт. Из полученной величины можно сделать вывод о трудносжимаемости грунта. И замеров надо сделать несколько и в разных местах, чтобы репрезентативность измерений сохранить и чтобы продажной девкой наш щуп никто не назвал бы. Причем основание щупа можно сделать меньше, чтобы меньше использовать вес. Но при этом нужно глобально увеличить количество измерений, ибо грунт — сами понимаете, штука неравномерная и вполне может оказаться, что на большой площади наши замеры имеют довольно значительную погрешность. Заметим, что в случае со строительством столбчатого фундамента вес надо не уменьшать, а увеличивать, причем значительно.

Но я, как принципиальный противник слишком уж научных методов в нашем с вами строительстве, предлагаю на эти чудо-приборы не заморачиваться, а оценивать трудносжимаемость грунта на глаз, то есть постояв, попрыгав и посмотрев, остаются ли после этого на земле следы.

Ну, конечно, я сделал некоторые допущения, о которых хотелось бы сказать. Так реально большой дом в два полных этажа обычно бывает с капитальной стеной. Эта капитальная стена добавит и веса нашему дому, но и площади основания. Разница получится не большая, но кому интересно — советую не пренебрегать проектом дома и все очень аккуратно считать.

Материал по расчету фундаментов, который вы только что прочитали, может помочь не только в выборе и расчете фундамента, но также и в выборе и расчете материалов для фундамента и стен. Удивительно, но деревянный дом не будет на на много легче пенобетонного. А использование полнотелых блоков в фундаменте вообще неоправдано. Опять же разброс в плотности фундаментных блоков тоже довольно велик. Рекомендую интересоваться спецификациями производителей.

Надеюсь, что этот материал кого-то позабавил, кому-то открыл глаза, а кому-то и помог сделать правильный выбор.

Обожающий все десять цифр и их сочетания
Дмитрий Белкин

Источник:
http://belkin-labs.ru/articles/108/

Расчет нагрузки на фундамент

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

  • Регион, в котором строится здание;
  • Тип почвы и глубину залегания грунтовых вод;
  • Материал, из которого будут выполнены конструктивные элементы здания;
  • Планировку здания, этажность, тип кровли.

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта

Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

  1. Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м 2 .
  2. Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
  3. Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м 2 .
  4. Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м 2 .
  5. Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м 2 .

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.

Читайте также  Внутреннее или наружное утепление стен, что выбрать

  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м 2 .
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м 2 . Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м 2 .

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

  1. Площадь перекрытий равна площади дома – 80 м 2 . В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м 2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м 2 .

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

  1. Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м 2 .
  2. Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м 3 .
  3. Находим вес стен, умножив объем на удельный вес материала из таблицы 5: 43,2·1800=77760 кг.
  4. Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м 2 .
  5. Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м 2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

  1. Площадь фундамента – 14,4 м 2 , глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м 3 .
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м 2 .

Расчет общей нагрузки на 1 м 2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R определяют по таблицам СНиП 2.02.01—83 «Основания зданий и сооружений».

  1. Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1386+7000+5400+2525=16 611 кг/м 2 =17 т/м 2 .
  2. Определяем условное расчетное сопротивление грунта по таблицам СНиП 2.02.01—83. Для влажных суглинков с коэффициентом пористости 0,5 R составляет 2,5 кг/см 2 , или 25 т/м 2 .

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

Источник:
http://stroyvopros.net/fundament/raschet-nagruzki-na-fundament.html

Допустимая нагрузка на почву от фундамента в местах основания столбов

Как рассчитать нагрузку на основание дома

Любое строительство дома начинается с расчетных и проектных манипуляций. Чтобы здание прослужило верой и правдой долгие годы, его основание должно иметь достаточную прочность и способность выдерживать определенную нагрузку от стен, кровли, перекрытий и всех конструкционных особенностей постройки. В некоторых случаях с расчетной задачей успешно справляются всевозможные калькуляторы фундамента, представленные в сети. Но нередко они обрисовывают лишь общую картину, не учитывая нюансов строения. Отсюда используются механизмы, позволяющие самостоятельно провести расчет возможной нагрузки, либо доверить этот процесс квалифицированному проектировщику.

Результатом качественных подсчетов являются данные по необходимой площади, конфигурации нулевого уровня и предельному давлению на грунт. Усредненного расчета для частного строительства обычно вполне достаточно, где условно принимается значение о равномерной нагрузке.

Расчет нагрузки на фундамент позволяет грамотно подойти к выбору того или иного вида основания. Для выполнения поставленной задачи необходимо оперировать следующими проектными данными:

  • вес самого здания;
  • вес и площадь нулевого уровня;
  • снеговая и ветровая нагрузка, характерная данному климатическому поясу;
  • площадь подошвы цоколя;
  • тип почвы и уровень расположения грунтовых вод;
  • планировка дома, этажность, вид кровли и ее покрытие.

Существуют некоторые различия в подсчетах для разных видов основания.

Ленточный вид

Применительно к ленточному основанию расчет производится с учетом несущей способности грунта. Если значение воздействия на почву несколько выше допустимого, то проблема решается раздвижением опорной площади нулевого уровня, то есть увеличивается ширина ленты.

С помощью ряда размерных конфигураций путем перемножения получается объем рабочей конструкции, который в свою очередь умножается на плотность бетона. Полученный результат покажет массу основания. Далее опорная площадь ленточного фундамента определяется умножением ширины цоколя на его длину.

Площадь подошвы нулевого уровня дома разделить на общую длину всех несущих стен. Полученное значение будет равно минимально допустимой ширине ленточного фундамента, которая в свою очередь не может быть меньше толщины стены.

Нагрузка для столбчатой и свайной основы

В случае фундамента из столбчатых свай, если расчетное давление на грунт превышает допустимые значения, то необходимо увеличить количество либо диаметр свай. В некоторых ситуациях могут потребоваться оба варианта. Число свай, требуемых для конкретного строения, узнается из общего веса строительства поделенного на несущую способность отдельного столба. При этом последнее отличается в зависимости от вида сваи. Важно не забыть и о коэффициенте запаса 1,3 при вычислении массы здания.

Расчет нагрузки на столбчатый фундамент определяется исходя из количества устанавливаемых свай. Для этого площадь основания делится на число опор. Из полученного значения извлекается квадратный корень и результатом будет необходимый размер сечения одной сваи. Отдельным пунктом рассчитывается ширина и несущая способность ростверка свайного фундамента. Вычисления производятся по аналогии с ленточным типом.

Стоит отметить, что сваи для столбчатого фундамента выполняются шагом не более 2 м и располагаются в углах строения, а также в местах пересечения несущих конструкций. На сегодняшний день это наилучший вариант для дома, так как сваи устанавливаются ниже уровня промерзания грунта, что снижает риск возникновения дальнейших деформаций.

Первоначальным проектным этапом является определение типа грунта. От этого будет зависеть глубина заложения будущего основания. Современных способов исследования существует масса, но самый доступный из них – выкопать несколько ям на участке земли под застройку и внимательно рассмотреть состав на срезе.

Глубина заложения цоколя определяется как зависимость показателей уровня сезонного промерзания почвы и типа грунта.

Источник:
http://vtekb.ru/fundament/dopustimaya-nagruzka-na-pochvu-ot-fundamenta-v-mestah-osnovaniya-stolbov.html

Таблицы допустимого давления на грунт и несущей способности грунта.

При разработке проекта для фундамента дома учитываются все факторы, в том числе и особенности грунтов. Для расчета общей допустимой нагрузки дома на грунт фундамента вы можете использовать формулу: A = Vдома (кг) / Sфунд (см2).

Таблица допустимого давления на грунт, кг/см 2 .

Грунт

Глубина заложения фундамента

Щебень, галька с песчаным заполнением

Дресва, гравийный грунт из горных пород

Песок гравелистый и крупный

Щебень, галька с илистым заполнением

Песок средней крупности

Песок мелкий маловлажный

Песок мелкий очень влажный

Иногда влажность грунтов может изменяться в большую сторону, в таких случаях несущая способность почвы становится меньше. Рассчитать влажность грунта можно самостоятельно. Для этого необходимо выкопать скважину или яму, и в том случае если через какой либо промежуток времени в ней появляется вода – грунт влажный, а если ее нет, то он сухой. Ниже мы рассмотрим плотность и несущей способности различных грунтов. Для расчета фундамента вы можете воспользоваться калькулятором фундамента.

Таблица плотности и несущей способности различных грунтов.

Грунт средней плотности

Песок среднего размера

Супесь влажная (пластичная)

Мелкий песок (маловлажный)

Мелкий песок (влажный)

Глина влажная (пластичная)

Суглинок влажный (пластичный)

При разработке проекта дома для примерного расчета фундамента, как правило, несущая способность принимается 2 кг/см 2 .

Следует отметить, что при разработке, грунт разрыхляется и увеличивается в объеме. Объем насыпи, как правило, больше объема выемки из которой грунт изымается. Грунт в насыпи будет постепенно уплотняться, это происходит под действием собственного веса или механического воздействия, поэтому значения первоначального коэффициента увеличения объема (разрыхления) и процента остаточного разрыхления после осадки будет между собой различаться. Грунты в зависимости от трудности и способа их разработки делятся на категории.

Таблица категорий и способов разработки почвы.

Категория грунтов

Типы грунтов

Плотность, кг/м 3

Способ разработки

Песок, супесь, растительный грунт, торф

Ручной (лопаты), машинами

Легкий суглинок, лёсс, гравий, песок со щебнем, супесь со строймусором

Ручной (лопаты, кирки), машинами

Жирная глина, тяжелый суглинок, гравий крупный, растительная земля с корнями, суглинок со щебнем или галькой

Ручной (лопаты, кирки, ломы), машинами

Тяжелая глина, жирная глина со щебнем, сланцевая глина

Ручной (лопаты, кирки, ломы, клинья и молоты), машинами

Плотный отвердевший лёсс, дресва, меловые породы,сланцы, туф, известняк иракушечник

Ручной (ломы и кирки, отбойные молотки), взрывным способом

Граниты, известняки, песчаники, базальты, диабазы, конгломерат с галькой

Источник:
http://www.calc.ru/Tablitsy-Dopustimogo-Davleniya-Na-Grunt-I-Nesushchey-Sposobn.html

Расчёт нагрузки на фундамент

Нагрузка на фундамент — это допустимые цифровые значения, обозначающие несущую способность. Проведение точных расчётов сопряжено с выполнением геологических исследований и определением степени рыхлости грунта и насыщения его влагой.

Зачем проводятся расчёты нагрузки на фундамент

Расчет нагрузки, которую будет переносить фундамент в процессе эксплуатации, является ключевым этапом проектирования любого основания. Исходя из данных расчетов определяются необходимые несущие характеристики будущего фундамента, его типоразмер и опорная площадь.

Определяемые нагрузки веса здания, снегового и ветрового воздействия, а также эксплуатационного давления, также сопоставляются с несущей способностью грунта на строительной площадке, поскольку несущая способность почвы, в некоторых случаях, может быть меньшей, чем несущие свойства самого фундамента.

Рис: Возможный результат неправильного расчета нагрузок на фундамент дома

Ответственное отношение к проведению данных расчетов гарантирует, что фундамент под конкретное здание будет подобран правильно. В противном случае, вы рискуете построить дом на слишком слабом фундаменте, что приведет к его разрушению и деформации, либо обустроить фундамент с недостаточной опорной площадью, который под весом здания просто осядет в грунт.

Общие правила проведения расчёта нагрузки на фундамент

Определяется нагрузка посредством использования переменных и постоянных величин:

  • масса здания;
  • вес основания;
  • снеговые нагрузки на кровлю;
  • ветряное давление на здание.

Общая масса здания вычисляется при сложении веса стен с перекрытиями, дверей с окнами, стропильной системы и кровли, а также крепежей, сантехники, декоративных элементов и количества людей, которые будут единовременно проживать в доме.

Расчёт нагрузки на ленточный фундамент

Определение нагрузки на ленточное основание начинается с подсчёта массы самой ленты, для чего используется следующая формула:

V – объём стен;
q – плотность материала основания.

Необходимо произвести суммирование всех типов давления на фундамент, для чего можно воспользоваться следующей формулой: (Pд+Pфл+ Pсн+Pв)/ Sф.

Получение точных сведений, возможно при учёте видов стен, надо определить, какие из них несущие и выполняют функцию удержания перекрытий, лестничных пролётов, стропил. Выявляются самонесущие стены, выполняющие функцию поддержания исключительно собственной массы. Исходя из этих данных, определяют под какую сторону закладывать стены определённой ширины, с обязательной проверкой допустимых значений.

Расчёт нагрузки на столбчатый фундамент

Определение нагрузки на фундамент столбчатого типа, осуществляется по одной формуле. Здесь надо учитывать, что воздействие здания будет распределяться между всеми существующими опорами. Требуется умножить площадь сечения столба () на высоту (H). Результатом вычисления станет получение объёма, который следует перемножить с плотностью материала, используемого для возведения фундамента (q)и общим числом столбиков, заглубляемых в почву.

  • Вычисления будут проводиться по следующей формуле: Pфc= Sс× H× q×N.
  • Определить суммарное сечение, можно по следующей формуле: Sсо= Sс × N.

Вычислить величину нагрузки на сваи, можно разделив массу дома на его опорную площадь, что будет выглядеть следующим образом: P/Sсо.

Расчёт нагрузки на свайный фундамент

Особенностью расчёта свайного основания, является необходимость выявления массы здания (P), которая делится на количество опор.

Рассчитывать нагрузку на свайный фундамент необходимо для того, чтобы в дальнейшем при проектировании ее можно было сопоставить с максимально допустимой нагрузкой на грунт строительной площадки, и при необходимости увеличить число свай либо сечение используемых опор

Чтобы сопоставить допустимые нагрузки на свайный фундамент и грунт необходимо выполнить следующие расчеты:

  • Определить вес здания и все сопутствующие нагрузки, просуммировать их и умножить на коэффициент запаса надежности;
  • Определить опорную площадь одной сваи по формуле: «r2 * 3.14» (r- радиус сваи, 3,14 — константа), после чего вычислить общую опорную площадь основания, умножив полученную величину на количество свай в фундаменте;
  • Рассчитать фактическую нагрузку на 1 см2 грунта: массу здания разделяем на опорную площадь фундамента;
  • Полученную нагрузку сопоставить с нормативной допустимой нагрузкой на грунт.

Для примера: дом массой 95 тонн. (с учетом снеговых и ветровых нагрузок) строится на фундаменте из 50 буронабивных свай, общая опорная площадь которых составляет 35325 см2. Грунт на участке представлен твердыми глинистыми породами, которые выдерживают нагрузку в 3 кг/см2.

  • Фактическая нагрузка на грунт: 95000/35325 = 2,69 кг/см2.

Как показывают расчеты, нагрузки от здания, передаваемые фундаментов на грунт, позволяют реализовывать данный проект в конкретных грунтовых условиях.

Порядок проведения вычислений и расчётов

Независимо от типа основания, расчёты производятся в следующей последовательности:

  • Необходимо выяснить параметры, касающиеся единицы длины опоры, помимо нагрузок от веса самого строения, которые состоят из массы стен, перекрытий и кровли, также определяется эксплуатационное давление, нагрузки от снегового покрова и ветровые нагрузки;
  • Расчет массы фундамента. Основание дома также будет оказывать нагрузку на почву, которую необходимо высчитать и добавить к нагрузкам от массы здания. Чтобы сделать это, нужно исходя из габаритов (высоты, ширины и периметра) определить объем основания, и умножить его на объемную плотность бетона (массу одного кубометра).
  • Расчет несущих характеристик почвы — для этого нужно определить тип грунта, и в соответствии с нормативными таблицами вычислить допустимую нагрузку на 1 кв.см. почвы.
  • Cверка полученных данных с сопротивлением почвы – если возникает необходимость, то осуществляется корректировка площади опоры, например, в случае с ленточным основанием, увеличивается его толщина. При обустройстве свайных или столбчатых оснований необходимо увеличить количество опор в фундаменте либо площадь их сечения;
  • Измерение фундамента – определение размеров;
  • Вычисление толщины подушки из песка, формируемой непосредственно под подошвой. Уплотняющая подсыпка из песка и гравия необходима для предотвращения усадки почвы под массой здания и для минимизации вертикальных сил пучения. В нормальных условиях ее толщина составляет 20 см (10 см песка и 10 см гравия), однако при строительстве тяжелых домов в пучинистом грунте она может быть увеличена до 50 см.

Необходимо учесть, что приведённые формулы расчёта нагрузки, будут актуальны исключительно в сфере малоэтажного строительства, то есть при возведении объектов высотой до 3-х этажей. Схема является упрощённой, так как учитывает только удельное сопротивление грунта, при необходимости прогнозирования сдвига грунтовых слоёв, следует обратиться за помощью к профессионалам. Желательно проводить расчёты дважды, чтобы наверняка определить нужные параметры, так как от этого зависит устойчивость здания.

Собираем показатели грунта

При проектировании фундамента необходимо проводить геодезический анализ грунта на строительной площадке, который позволяет определить три важных показателя — тип почвы, глубину ее промерзания и уровень расположения грунтовых вод.

Исходя из типа грунта вычисляется его несущая характеристика, которая используется при расчете опорной площади основания. Глубина промерзания почвы определяет уровень заглубления фундамента — при строительстве в условиях пучинистых грунтов фундамент необходимо закладывать ниже промерзающего пласта земли. На основании данных о грунтовых водах определяется необходимость обустройства дренажной системы и гидроизоляции фундамента.

Рис: Структура грунтов на территории Московской области

Для сбора показателей необходимо с помощью ручного бура по периметру площадки под застройку сделать несколько скважин глубиной 2-2.5 м. Одна скважина должна располагаться в центре участка, еще две — в центральных частях боковых контуров предполагаемого фундамента. Необходимость бурения нескольких скважин обуславливается тем, что на разных участках площадки может наблюдаться отличающийся уровень грунтовых вод.

В первую очередь нужно определить тип почвы: в процессе бурения возьмите изымаемый из скважины грунт (с глубины 2-ух меров) и скатайте его в плотный цилиндр, толщиной 1-2 сантиметра. Затем попытайтесь согнуть цилиндр.

  • Если почва рыхлая и цилиндр из нее сформировать невозможно (она попросту рассыпается), вы имеете дело с песчаным грунтом;
  • Цилиндр скатывается, но при этом он покрыт трещинами и разламывается при сгибающем воздействии, значит грунт на участке представлен супесями;
  • Цилиндр плотный, но при сгибании ломается — легкий суглинок;
  • Грунт хорошо скатывается, но при сгибании покрывается трещинами — тяжелый суглинок с большим содержанием глины;
  • Почва легко скатывается, не трескается и не ломается при сгибании — глинистый грунт.

Далее необходимо определить показатель уровня грунтовых вод. Оставьте пробуренные скважины на ночь, чтобы они заполнились водой. На следующее утро возьмите деревянную рейку двухметровой длины и обмотайте ее бумагой, опустите рейку в скважину. По мокрому участку определите, на каком расстоянии от поверхности скважины расположена вода.

Рис: Пробная скважина для определения уровня грунтовых вод

Предлагаем вашему вниманию карту расчетной глубины промерзания почвы в разных регионах России, которую нужно использовать при самостоятельном проектировании фундамента.

Определяем несущую способность грунта

Ориентировочную несущую способность грунта можно определить на основе проделанных ранее изысканий. Зная тип грунт на участке под застройку сопоставьте его с данными в нижеприведенной таблице.

Несущая способность (расчетное сопротивление)

Несущая способность (расчетное сопротивление

От 2 до 3 кгс/см 2

Щебенистая почва с пылевато-песчаным заполнителем

От 4 до 3 кгс/см 2

Щебенистая почва с заполнителем из глины

От 4 до 4.5 кгс/см 2

От 3 до 5 кгс/см 2

Гравийная почва с песчаным заполнителем

От 1 до 2 кгс/см 2

Гравийная почва с заполнителем из глины

От 3.6 до 6 кгс/см 2

От 2 до 3 кгс/см 2

Среднеплотный — 5, высокоплотный — 6 кгс/см 2

От 1.9 до 3 кгс/см 2

Среднеплотный — 4, высокоплотный — 5 кгс/см 2

Насыпной уплотненный грунт (песок, супеси, глина, суглинок, зола)

От 1.5 до 1.9 кгс/см 2

Среднеплотный — 3, высокоплотный — кгс/см 2

Сухая пылеватая почва

Среднеплотная — 2.5, высокоплотная — 3 кгс/см 2

Среднеплотный — 2, высокоплотный — 3 кгс/см 2

Влажная пылеватая почва

Среднеплотная — 1.5, высокоплотная 2 кгс/см 2

Водонасыщенная пылеватая почва

Среднеплотная — 1, высокоплотная — 1.5 кгс/см 2

Таблица 1: Расчетное сопротивление разных видов грунтов

Расчёт нагрузки с учётом площади и региона дома

Все нагрузки на фундамент состоят из двух величин — постоянных и переменных. К постоянным нагрузкам относится вес самого здания, к переменным — сила давления снегового покрова и ветра, величина которой зависит от региона, где ведется строительство.

Зная площадь дома и нормативный вес материалов, из которого он будет возводиться, можно рассчитать ориентировочную нагрузку на фундамент, исходящую от массы строения.

Для проведения расчетов воспользуйтесь следующими справочными таблицами:

Таблица 2: Расчетный вес стен

Таблица 3: Расчетный вес перекрытий

Таблица 4: Расчетный вес кровли

Следующий этап расчетов — определение нагрузок от снегового покрова. Нормативная величина снеговой нагрузки различается в разных регионах России. Для расчета вам необходимо умножить площадь кровли здания на вес 1 м2 снега и коэффициент уклона крыши.

Таблица 5: Нагрузка от снегового покрова на фундамент здания

Осталось лишь рассчитать ветровую нагрузку на здание. Делается это по формуле:

  • площадь здания * (N +15*высота здания); где N — расчетная ветровая нагрузка для разных регионов России, которую вы можете увидеть на нижеприведенной карте.

Наши услуги

Компания Установка Свай» занимается погружением железобетонных свай — забивка свай, лидерным бурением и поставкой свай для сооружения свайного фундамента. Если Вас интересует проведение работ, связанных с проектировкой, гео разведкой, либо возведение свайного фундамента, воспользуйтесь формой внизу сайта.

Полезные материалы

Несущая способность грунта

Такое свойство грунта как его несущая способность — это первоочередная информация, которую необходимо выяснить на подготовительном этапе строительства фундамента.

Испытания свай

При строительстве часто используют в качестве фундаментов сваи. Но прежде чем вводить такие элементы в работу, должна быть проведена проверка их на прочность.

Несущая способность свай

Несущая способность свайных конструкций – это определение величины нагрузки, которую она способная воспринимать с учётом деформации грунта под её основанием.

Источник:
http://ustanovkasvai.ru/stati/157-raschjot-nagruzki-na-fundament